

Seat No.

HB-003-2016003

B. Sc. (Sem. VI) (CBCS) (W.E.F. 2019) Examination April - 2023 Mathematics : Paper - 10(A) (Optimization & Numerical Analysis - II)

Faculty Code : 003 Subject Code : 2016003

Time : $2\frac{1}{2}$ Hours / Total Marks : 70

Instructions: (1) Answer all questions.
(2) Figures to the right indicate marks.
1 (a) Answer the following questions in short :

(1) Which variable is introduce to convert the constraint 22x+3y≤5 into equality?
(2) Define surplus variables with respect to LPP.
(3) Define convex set.
(4) Define convex linear combination.

(b) Attempt any one out of two :

(1) Write the canonical form of LPP.

(2) Write the general mathematical form of LPP.

(c) Attempt any one out of two :

. ..

- (1) Explain graphical method for solving LPP.
- (2) Obtain dual of the following LPP :

Min.
$$Z = 3x_1 + x_2$$
.
Sub. to $2x_1 + 3x_2 \ge 2$
 $x_1 + x_2 \ge 1$

and $x_1, x_2 \ge 0$

- (d) Attempt any one out of two :
 - (1) Explain Two-Phase method for solving LPP.
 - (2) Explain simplex method for solving LPP.

HB-003-2016003]

[Contd...

4

2

3

5

(a)	Ans	wer the	e following	questions in	short :		
	(1)	Who	invented	Hungerian	method	for	solving
Assignment problem?							
	(2) Write full form of LCM.						

- (3) Define non degenerate basic feasible solution with respect to Transportation problem.
- (4) Write first step of NWCM to find initial solution of TP.

(b) Attempt any one out of two :

2

- (1) Write mathematical form of a Assignment problem.
- (2) Write mathematical form of a transportation problem.
- (c) Attempt any one out of two :
 - (1) Explain LCM method for finding initial solution of Transportation problem.
 - (2) Find initial solution of following TP by NWCM method:

	W	Х	Y	Ζ	Supply
Ā	19	30	50	10	7
В	70	30	40	60	9
С	40	8	70	20	18
Demand	5	8	7	14	34

- (d) Attempt any one out of two :
 - (1) Explain Hungarian method for solving Assignment problem.
 - (2) Find optimum solution of following Transportation problem:

	W1	W2	W3	Supply
F1	2	7	4	5
F2	3	3	1	8
F3	5	4	7	7
F4	1	6	2	14
Demand	7	9	18	34

3 (a) Answer the following questions in short :

(1) Which formula is used for inverse interpolation?

2

- (2) If f(1, 3) = 5, then find f(3, 1).
- (3) Write Laplace Everett's formula.
 - Write Bessel's formula.

HB-003-2016003]

(4)

[Contd...

5

4

2

3

4

	(b)	Attempt any one out of two: (1) Define divided difference. (2) If $f(x) = x^3$, then find $f(1, 3, 5)$.	2
	(c)	 Attempt any one out of two : (1) Derive Bessel's formula. (2) Apply lagrange's formula to find f(2) given that f(0) = -12, f(1) = 0, f(3) = 6, f(4) = 12 	3
	(d)	Attempt any one out of two: (1) Derive Gauss backward interpolation formula. (2) Apply Laplace Everett's formula to find y_{34} given that $y_{20} = 11.4699, y_{25} = 12.7834, y_{30} = 13.7648,$ $y_{35} = 14.4982, y_{40} = 15.0463.$	5
ļ	(a)	 Answer the following questions in short : (1) Write general quadrature formula. (2) Write Trapezoidal Rule. (3) Write Simpson's 3/8 Rule. (4) Which formula is derived by taking n = 2 in general quadrature formula? 	4
	(b)	Attempt any one out of two: (1) If $E = e^{hD}$, then show that $D^{2} = \frac{1}{h^{2}} \left[\Delta^{2} - \Delta^{3} + \frac{11}{12} \Delta^{4} - \frac{5}{6} \Delta^{5} + \dots \right]$ (2) Evaluate $\int_{2}^{6} \frac{dx}{x}$ by Simpson's 1/3 rule.	2
	(c)	Attempt any one out of two: (1) Find the value of $f'(90)$ using sterling's formula to the following data:	3
	(d)	Attempt any one out of two:	5

- Attempt any one out of two: (d)
 - (1) Derive Simpson's 3/8 rule.
 - Evaluate $\int_0^{10} \frac{dx}{1+x^2}$ by (1) Trapezoidal rule (2) (2) Simpson's 1/3 rule (3) Simpson's 3/8 rule.

HB-003-2016003]

4

[Contd...

5 (a) Answer the following questions in short :

> Write formula for Range's method. (1)

- Write formula for Picard's method. (2)
- (3) Write formula for Euler's method.
- Write formula for Taylor's method. (4)
- Attempt any one out of two: (b)
 - (1) For differential equation $\frac{dy}{dx} = 3x + y^2$, y(1) = 1.2, find

 k_1, k_2 by Range's method, h = 0.1.

Find value of y at x = 0.1 for first approximation by (2)

Picard's method of
$$\frac{dy}{dx} = 1 + xy$$
, $y(0) = 1$.

- Attempt any one out of two: (c)
 - (1) Explain Euler's modified method for solving

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

(2) Explain Taylor's method for solving

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

(d) Attempt any one out of two:

Explain Picard's method for solving (1)

$$\frac{dy}{dx} = f(x, y), y(x_0) = y_0$$

(2) Solve $\frac{dy}{dx} = x^2 - y$, y(0) = 1. Find y(0.1) by Runge kutta's method.

4

3

2